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Principles for Evaluating the Quality Attributes of a Software Architecture 

Abstract: Software quality is the degree to which software possesses a 
desired combination of attributes (e.g., reliability, interoperability). In this paper 
we describe a few principles for analyzing a software architecture to determine 
if it exhibits certain quality attributes. We show how analysis techniques 
indigenous to the various quality attribute communities can provide a 
foundation for performing software architecture evaluation. We also show how 
the principles provide a context for existing evaluation approaches such as 
scenarios, questionnaires, checklists, and measurements. Our immediate goal 
in identifying these principles for attribute-based architecture evaluation is to 
better integrate existing techniques and metrics into software architecture 
practice, not necessarily to invent new attribute-specific techniques and 
metrics. A longer-term goal is to codify these principles into systematic 
procedures or methods for architecture evaluation. This paper is an initial step 
towards identifying the ingredients of such methods. 

1       Introduction 
Software quality is the degree to which software possesses a desired combination of attributes 
(e.g., reliability, interoperability) [IEEE-1061]. Software quality is one of three user-oriented 
product characteristics: quality, cost, and schedule. Cost and schedule can be predicted and 
controlled to some extent by mature organizational processes. However, process maturity 
does not translate automatically into product quality. Software quality requires mature technol- 
ogy to predict and control quality attributes. If the technology is lacking, even a mature orga- 
nization will have difficulty producing products with predictable performance, dependability, or 
other attributes. 

Quality, cost, and schedule are not independent. Poor quality eventually affects cost and 
schedule because software requires tuning, recoding, or even redesign to meet original re- 
quirements. Cost and schedule overruns are common because serious problems are often not 
discovered until the system integration phase.1 

Few would disagree that it is more cost effective to detect potential software quality problems 
earlier rather than later in software development. Recently, the software architecture has re- 
ceived attention as being the right focal point for the detection of aberrations in software 

1- Horror stories that illustrate the problem are not uncommon. "On Monday, September 2, 1991, at 9 a.m., a $6 
million manufacturing support systems/network integration program went live, the largest computer project the 
company had undertaken. By 10:30 a.m., The system had miserably failed,' reported the program manager of 
a chemical company. 'We had not anticipated needing so much memory, consequently, the system froze in less 
than two hours, stopping all work at the site'" [Slavin 93]. The quickness of the disaster suggests that the de- 
signers were flying blind, so to speak, throughout the development of the system. 
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quality; the creation of the software architecture is the right time start analyzing software qual- 
ity and the software architecture is the right artifact to analyze [Abowd 96].2 

In this paper we describe a few principles for analyzing a software architecture to determine if 
it exhibits certain quality attributes. We show how analysis techniques indigenous to the vari- 
ous quality attribute communities can provide a foundation for performing software architec- 
ture evaluation. We also show how the principles provide a context for existing evaluation 
approaches such as scenarios, questionnaires, checklists, and measurements [Abowd 96]. 
Our immediate goal in identifying these principles for attribute-based architecture evaluation 
is to better integrate existing techniques and metrics into software architecture practice, not 
necessarily to invent new attribute-specific techniques and metrics. A longer-term goal is to 
codify these principles into systematic procedures or methods for architecture evaluation. This 
paper is an initial step towards identifying the ingredients of such methods. 

This paper presents a brief overview of a set of principles for performing quality attribute-based 
architecture evaluation, illustrates attribute specific analyses, suggests the notion of architec- 
ture trade-offs based on attribute profiles, and concludes with a summary of the implications 

of this work. 

There is no agreement on the definition of architecture. For example, in some communities, the artifact that we 
refer to as the "architecture" is referred to as the "design" and an architecture is a higher level abstraction from 
which many designs could be derived. 
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2      Overview of the Principles 
In this section we provide a brief description of the principles: the identification of the contract 
between the system and the environment, the identification of the software architecture, the 
identification of the hardware resources allocated to the software components, and the analy- 
sis of the information gathered by application of the previous principles. Figure 2-1 illustrates 
the relationships between the types of information needed for the analysis and the recursive 

nature of this analysis. 

Contract 

Environment 

System 

Hardware resource allocation 

Software architecture 

(a) Information needed for the analysis 

Environment System 

<=> 

Obligations and 
expectations 
between a system 
and its environment 

o 

I o 
U 

3 
t/3 
>> 

s 
1/1 

e „ 
a <u 
o 3 

O   03 

CD Software component(s) 

^=5?0 
*-<=> 
«N.O 

Software subsystem(s) 

<=> ^ CD 

\       ,     I Hardware resources allocated to 
components and subsystems 

(b) Recursive analysis to compose attributes and verify contract 

Figure 2-1:   Information Gathering and Analysis 

We will use the system depicted in Figure 2-2 to illustrate the principles underlying an attribute- 
based architecture evaluation. In this system, three components process input data from the 
environment and pass their results to a fourth component. The last component in turn sends 
results back to the environment. For purposes of illustration, we will concentrate on three qual- 
ity attributes: reliability (the probability that the system will continuously provide outputs over 
a specified amount of time), worst-case latency (the time elapsed between the arrival of an 
input to the system and its corresponding output to the environment), and throughput (the sys- 
tem output rate). 
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Figure 2-2:   Components and Connections 

2.1   Information-Gathering Techniques 

Quality is relative to the intended use of the system. An evaluation of quality must take into 
consideration the environment surrounding the system in addition to the system itself. The sys- 
tem can be decomposed and any of its parts can be subject to the analysis. Everything outside 
of the current focus of interest constitutes its "environment/Therefore the environment is strict- 
ly relative to the system being evaluated at the moment and will change as the system chang- 

es. 

The system typically consists of software and hardware components. For our purposes, we 
differentiate between these two types of components to focus on the architecture of the soft- 
ware components—i.e., the software architecture. We use the terms subsystem and compo- 
nent to refer to the building blocks of a system.3 A subsystem is made up of smaller 
subsystems or components; a component cannot be decomposed. 

The system and its environment are partners in a "contract" where the system and the envi- 
ronment both have expectations of each other and where both have obligations to meet these 
expectations. The expectations of each party must be consistent with the obligations of the 
other party. The principle of "design by contract" is described by Jezequiel and Meyer [Jeze- 

quiel 97] as 

the principle that interfaces between modules of a software system — specially 
a mission-critical one — should be governed by precise specifications, similar 
to contracts between humans or companies. The contracts will cover mutual 
obligations (preconditions), benefits (postconditions), and consistency 
constraints (invariants). 

Jezequiel describes the Ariane 5 launcher crash that was caused by a software error—the lack 
of a precise specification of a reused module [Jezequiel 97]. Although the focus of the article 
(and preceding articles in the same column) is on object technology and reuse, the concept of 
design by contract is applicable to a broader class of software engineering situations. 

3- Subsystem/components are relatively neutral terms to describe the structure of a system. The term "process" 
might be loaded with implications about number of threads of control or processor allocation. A sub- 
system/component can have any number of threads and can use any number of processors. 
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Scenarios, checklists, and questionnaires are qualitative techniques applicable to the identifi- 
cation of the contract, the hardware resource allocation, and the software architecture. When 
conducting an evaluation, one or more of these techniques might be applied, depending on 
the environment and the system. The appendix illustrates the use of these techniques for iden- 
tification of fault propagation paths and resource utilization. A comparison of techniques 
across a number of dimensions is summarized in Figure 2-3. 

Review Method Generality Level of Detail Phase What is Evaluated 

Questionnaire general coarse early 
artifact 
process 

Checklist domain-specific varies middle 
artifact 
process 

Scenarios system-specific medium middle artifact 

Metrics 
general or domain- 

specific 
fine middle artifact 

Prototype, 
Simulation, 
Experiment 

domain-specific varies early artifact 

Figure 2-3:   Properties of the Evaluation Approaches3 

a.    This table is taken from Abowd et al., Recommended Best Industrial Practice for Software Architecture 
Evaluation [Abowd 96]. 

Traditional categories of engineering design knowledge can be useful in identifying the infor- 
mation needed for the analysis. Vincenti defines several categories of knowledge, of which the 
following two are specially relevant: fundamental design concepts, and criteria and specifica- 
tions [Vincenti 90].4 

• The fundamental design concepts are the operational principle and normal configuration. 
The operational principle defines how the device works: it defines the device and provides 
criteria for (technical) success. The normal configuration is the shapes or arrangements 
that are commonly agreed to best embody the operational principle. "Every device 
possesses an operational principle, and, once it becomes an object of normal every day 
design, a normal configuration. Engineers doing normal design bring these concepts to 
their task usually without thinking about them" [Vincenti 90, page 210]. 

The rest of Vincenti's categories (theoretical tools, quantitative data, practical considerations, and design in- 
strumentalities) are more relevant to what we cover under analysis. 
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• The criteria and specifications are specific, quantitative goals of the design, couched in 
concrete technical terms, appropriate to the device and its use. During the learning phase 
of a technology the criteria might be unknown or only partially understood; sometimes 
they are obvious, sometimes they must be devised consciously, sometimes they are 
obscure and require great effort and time. "Translation of the utilitarian, usually qualitative, 
goals of a device into concrete technical terms — and the knowledge required to do it — 
are critical for engineering design" [Vincenti 90, page 212]. 

Similar concepts are emerging in the software engineering literature. Shlaer describes a "re- 
cursive design method" that requires greater precision in the specification of all system com- 
ponents and relies on automation to produce and assemble these components into the final 
system [Shlaer 97]. The article characterizes the construction of an architecture as an expert 
process that, although not understood in detail, could be partitioned into a set of key activities. 
Although the focus of the article is on object-oriented analysis and synthesis, the first three 
activities are applicable to a broader class of software engineering situations. 

• Characterize the system — "This step elicits those characteristics of the system that 
should shape the architectural design. [A questionnaire] helps to focus the activity and 
ensure that all issues are addressed. This questionnaire emphasizes fundamental design 
considerations regarding size, memory usage, data access time, throughput, 
identification of critical threads, response time, and the like" [Shlaer, page 63]. 

• Define conceptual entities — "This step defines and describes precisely the conceptual 
entities of the architecture and the relationships that must hold among them." "Which 
objects appear on an OIM [Object Information Model] depend on the concepts inherent in 
the architecture under construction" [Shlaer, page 66]. 

• Define theory of operation — "This step describes precisely how the system works as a 
whole. We have found that an informal but comprehensive theory-of-operation document 
or technical note works well to develop the appropriate concepts. This document should 
describe the threads of control that run through the architecture domain, covering all 
modes in which the system operates, such as normal system operation; cold-start and 
initialization procedures; warm-start, restart, and failover operation, as required for the 
delivered system; and shutdown" [Shlaer, page 67]. 

2.2   Attribute-Specific Analysis Techniques 

Depending on the quality attributes of interest, the evaluators can use different qualitative and 
quantitative techniques to conduct the analysis. These techniques have evolved in separate 
communities, each with its own vernacular and point of view [Barbacci 95]. Some of the terms 
and definitions used by these communities can be found in Appendix B on page 33. 

Reliability and risk analysis are multi-disciplinary subjects and a number of practical methods 
are used in routine engineering activities [Modarres 93]. Some of these techniques are appli- 
cable to software development. In dependability, qualitative fault forecasting is aimed at iden- 
tifying, classifying, and ordering the failure modes, or at identifying the event combinations 
leading to undesirable events. Quantitative fault forecasting (mainly modeling and testing) is 
aimed at deriving probabilistic estimates of the dependability of the system. For example, re- 
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liability growth models [Laprie 90] are aimed at performing reliability predictions from data rel- 

ative to past system failures. 

In safety, the focus is not the system failure but its consequences on the environment—i.e., the 
hazard. Hazard identification attempts to develop a list of possible system hazards before the 
system is built. Following the identification of a hazard, a hazard analysis process is used to 
develop a risk mitigation plan. Hazard identification techniques include brainstorming, consen- 
sus techniques (e.g., delphi and joint application design), and hazard and operability analysis 
(HAZOP). Hazard analysis techniques include fault tree analysis (FTA), event tree analysis 
(ETA), failure modes and effects analysis (FMEA), and failure modes effects and criticality 
analysis (FMECA). All of these techniques are standard practices in other engineering disci- 
plines and are being adopted and customized for software development (e.g., HAZOP 

[Chudleigh 95, MOD 95]). 

In security, analysis techniques include formal methods (verify that the design of the system 
meets the requirements and specification of the security policy), penetration analysis (stan- 
dard attack scenarios to determine if the system is resilient to these attacks), and covert-chan- 
nel analysis (to determine the bandwidth of any secondary data channel that is identified in 

the system). 

In performance, analysis methods have grown out of two separate schools of thought: queue- 
ing theory and scheduling theory. Queuing analysis is mostly concerned with average case ag- 
gregate behaviors. When worst-case behavior is of interest, scheduling analysis might be 
more appropriate. Formal methods include various forms of timed logic systems [Jahanian 86] 
or timed process algebras, for example. 
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3      The Identification of the Contract 
This principle requires that the evaluators identify the expectations and obligations of the sys- 
tem. This type of analysis is not inconsistent with the notion of a discovery evaluation in which 
the incipient architecture specifications are checked against requirements (reviewed in 
[Abowd 96]). 

There are different types of attributes. Some are measured by system activities (e.g., latency, 
availability), some are measured by inspection activities (e.g., coupling, cohesion), and some 
are measured by user activities (e.g., time to complete a task). In addition, depending on the 
attributes of interest, the environment might be an operational environment (e.g., networks, us- 
ers), a development environment (e.g., life-cycle organizations), or a policy environment (e.g., 
laws, institutional regulations). These cover a lot of ground. For the evaluation to be meaning- 
ful, expectations and obligations must be observable and measurable. 

System obligations and expectations are written in the form of scenarios. These scenarios are 
short descriptions of a requirement, an operational situation, a modification to the system, etc. 
The following are illustrative examples of scenarios identified from a contract: 

The environment depends on data from the system and expects no more than 1 hour of 
system down time in a year (minimum availability requirement). 

The system failure rate is less than one failure/month (minimum reliability requirement). 

The environment expects the response time or latency of the system to be less than 100 
milliseconds (worst-case latency requirement). 

The system must process up to 20 input events per minute (throughput requirement). 

The system can resist overflooding by excessive rate of input events (security against a 
type of attack). 

The environment expects the system to allow processor and network upgrades 
(modifiability of resources). 

The environment provides inputs with exponentially-distributed arrival times with arrival 
rate X. 

The scenarios define what needs to be confirmed by the analysis. 
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4      The Identification of the Software Architecture 
A software architecture is characterized by a particular combination of software components 
and connections. This principle requires that the evaluators identify the components and con- 

nections within the system. 

There are different kinds of connections between components: structure, the component con- 
nections showing the flow of data, and behavior, the underlying semantics of the system and 
the components, including the flow of control. Knowledge of the operational principle and nor- 
mal configuration [Vincenti 90] are essential to the identification of the architecture. 

4.1 Structure 

In this example, three components (the "participants") process inputs from the environment. 
Their outputs feed a fourth component (the "voter") whose output, in turn, goes back to the en- 
vironment. This portion of the architecture can be identified through questionnaires that elicit 
components and data flow connections to whatever level of detail is appropriate or desired. 

4.2 Behavior 

To increase the reliability of the system, the three participants perform redundant (but not nec- 
essarily identical) computations and the fourth component, the voter, chooses the "correct" re- 
sult from the three components as the output from the system.5 Once the voter detects a faulty 
participant, it ignores that participant from then on and continues operating with the remainder. 
If the voter can not make a decision, the voter fail-stops. Once the function (or functions) of 
each component is defined, this portion of the architecture identification can be carried out 
through function-specific questionnaires eliciting additional details ("What kind of voting?" 
"What kind of synchronization protocol?" "What kind of errors are detected?", etc.). 

For example, consider the following two basic behaviors for the voter and their variants: 

1. majority voting — The voter selects two out of three inputs or else selects two out of two 
inputs (the non-failed participants must agree) or else shuts down (the system fails). Al- 
though the three components take the same inputs and are expected to compute the 
same values, they do not have to use the same algorithm. Variations include 

- synchronous voting — The voter takes a periodic snapshot with period Tv and 
makes the decision with whatever inputs it has. When the voter takes a 
snapshot, it expects to see at least two identical inputs. A faulty participant 
could send data at the wrong time or with the wrong value. These two types of 
fault are indistinguishable to the voter. 

5- This piece of information about the "semantics" of the system is not derivable from the structure diagram, yet 
it affects the evaluation of the architecture. Another drastically different interpretation could be that three sep- 
arate components process three separate data streams, all of which are required to update a common data 
store that requires mutually exclusive access. 
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- asynchronous voting — The voter waits for the inputs but has a timer interval to 
detect missing inputs. 

2. preference voting —The voter selects P1 if P1 is working; or it selects P2 if P2 is working; 
or it selects P3 if P3 is working; or it shuts down (the system fails). Each input might have 
a different definition of "working" (e.g., error detection condition). Variations include 

- value error detection — The voter has a reasonableness test or the input data 
comes with an error flag. 

- time error detection — The voter has an interval timer to time-out. 

In addition to the choices of component and voter behavior, availability of the system is affect- 
ed by repair and reinsertion into service of failed components. 

• repairs — Components are repaired as soon as the voter declares them failed. A repair 
action takes some time to repair. 

• no repairs — Components are not repaired. 
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5      The Identification of the Hardware Resource Allocation 
This principle requires that the evaluators collect information about the underlying computa- 
tion, storage, and communication resources. These are necessary to the analysis because 
they are consumed by or shared between software components. To the extent that hardware 
resources are finite or fallible they will have an impact on the overall quality of the system. 

The system under consideration is implemented with standard processors and local area net- 
works. To simplify things, assume that we are not using shared memory multiprocessors—that 
is, memories belong to a processor. Variations include 

• independent — Each software component executes on a separate processor. 

• shared — All software components execute in the same processor as schedulable units 
of concurrency (i.e., process).6 Variations include the following: 

- Priority of voter is higher than that of the participants. 

- Priority of voter is lower than that of the participant's. 
However, when the voter's priority is lower than the priority of the participants, 
its behavior is sensitive to the behavior of the participants, and thus can be 
influenced by aberrant participant behavior. This is inconsistent with the voter's 
purpose to mask such behavior. A mixed processor allocation might be more 
appropriate for this situation. 

• mixed — The three participants share one processor; the voter uses a separate 
processor. The three participants are schedulable units of concurrency within their shared 
processor. 

Although the number of resource allocation schemes is potentially unbounded, in reality, re- 
sources are likely to be chosen from a small collection of commercial, off-the-shelf options. 
The identification of the hardware resources and their allocation to software components can 
be carried out through questionnaires and checklists that ask what resources (processors, 
memory and storage devices, buses, networks) are used by each software component. It is 
particularly important to identify shared resources, which might not be apparent from the de- 
scriptions of the structure and behavior. 

We're not making any distinctions between processes, tasks, or threads. 

CMU/SEI-96-TR-036 13 



^4 ~ " CMU/SEI-96-TR-036 



6      The Analysis 
This principle requires that the evaluators use the information gathered so far to determine if 
the system will be able to fulfill its obligations. The goal of this analysis is to ensure that com- 
ponents (hardware and software) cooperate in a manner that ensures that the system's obli- 
gations are fulfilled. Analysis is performed from the point of view of the system. Part of the 
analysis takes place during the contract identification, to ensure that the system expectations 
and system obligations are stated in a manner that is unambiguous and consistent. Of course, 
this assumes that the system will meet its obligations; this more detailed analysis is necessary 
to verify that the system can fulfill each of its obligations. 

Realizing that an architectural design is still a relatively high-level design, accurate prediction 
might not be possible. However, the evaluation process will be useful in gaining insights into 
the system and should continue to be used throughout the development. In the absence of 
quantitative data, quantitative assumptions (or budgets) can be established and modified as 

development progresses. 

6.1   Example Analysis 

For brevity, we will only consider the case of a synchronous majority voter on a shared proces- 
sor in which the voter has higher priority than the participants and in which failed participants 
are not repaired. During the identification of the contract, we would obtain a set of scenarios 
that identify the attributes of interest, such as the following: 

• The system failure rate is less than one failure/month (minimum reliability requirement). 

• The system must process up to 20 input events per minute (throughput requirement). 

• The environment expects the response time or latency of the system to be less than 100 
milliseconds (worst-case latency requirement). 

The goal of the analysis is to evaluate the quality attributes of the system reliability (Rs), laten- 
cy (Ls), and throughput (Ts) by composing the attributes of the components and to compare 
these values with the obligations/expectations of the system. 

6.1.1    Reliability Analysis 

Different reliability modeling techniques can be used depending on the operating assump- 
tions. In environments where repairs are not feasible (the system fails when all redundancy is 
exhausted) we can use combinatorial modeling techniques like reliability block diagrams and 
fault trees to compute the reliability of the system, Rs. In environments where repairs are fea- 
sible or where order of events (internal component or subsystem failures) matter, we must use 
Markov models instead. 

Reliability block diagrams work for simple cases, where components are either in series (all 
must work) or parallel (at least one must work). In this example there are many possible reli- 
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ability block diagrams, depending on the hardware resource allocation and the software archi- 
tecture (structure and behavior of the software components). 

An initial reliability block diagram could be deduced from the structure given that the reliability 
of each component (Rp1, Rp2, Rp3, Rv) has been specified. If components share resources, 
their reliabilities are not independent (they have common-mode failures) and the shared re- 
sources must be represented in the block diagram. Finally, depending on the nature of the "vot- 
ing," the system reliability can vary. For example, a majority voter requires agreement between 
at least two components to determine the correct output; an averaging voter computes the av- 
erage of the three inputs (perhaps subject to some "reasonability" test); a priority voter might 
assign weights to different components (for example, the component executing the simpler or 

better known algorithm might have a higher weight). 

The reliability of the system is computed from the reliability of the components and their inter- 
actions. Since there are no repairs, once the voter detects a faulty component, it ignores that 
component from then on and, of course, expects the other two to agree from then on. If there 
is a disagreement, the voter fail-stops. For simplicity, assume the three participants are iden- 
tical, with the same reliability and all three participants execute on the same processor. The 
reliability block diagram for this system is show in Figure 6-1. 

TMR 

nn 
Voter      Processor 

n   n LJ    L-J 

System 

Figure 6-1:   Reliability Block Diagram 

If we assume that the time to failure is a random event, with exponential distribution, the reli- 

ability of a component is given by 

R (t) = e~    where X is the failure rate of the component. 

The reliability of a triple-modular-redundant (TMR) system is [Trivedi 82] 

2 3 
RTMR^ = 3R'participant ^ ~^RParticipant ^ 

However, this does not take into account the reliability of the voter or the processor (both the 
shared processor and the voter must be operating for the system to operate). Thus, to be pre- 
cise, the reliability of the system is: 

RSystenP = RProcessoP">XRVoter^XRTMR^ 

Notice that just having replicated components and a voter does not guarantee increased sys- 
tem reliability. The function RTMR is not always greater than Rparticipant.For smal1 values of t, 
RTMR is larger than Rparticipant> and for lar9e values of fit is the other way around. Jalote iden- 
tifies this threshold at t0 = 0.7/A, [Jalote 94, page 36]. 
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6.1.2 Throughput Analysis 

The throughput of a system can be calculated using schedulability theory and queueing mod- 
els. If the voting execution time (Cv) < the voting interval (Tv) then the throughput in the syn- 
chronous case is 1 vote per interval Tv and therefore 1 output per interval Tv since the voter 
votes at its own rate independent of the rate at which the input arrives and independent of the 

execution time of the participants. 

Often average latency is a concern that accompanies throughput. For the case of periodic in- 
put, the average latency is simply the sum of the average execution times of the voter and the 
participants. For the case of stochastic input arrivals, assuming Poisson arrivals, the average 
case latency is a function of the input arrival rate and the average execution time. Standard 
M/G/1 queuing models can be used to calculate this. 

Another potentially important issue is the relationship between input and output. For the syn- 
chronous case, if there is to be a one to one correspondence between output and input, the 
period of the voter must be equal to the input arrival period and Cm < Tm. 

6.1.3 Worst-Case Latency Analysis 

The latency of a system can be calculated using schedulability theory and queueing models. 
Worst-case latency is measured from the time an input arrives to the time the output is sent. 
If the voter's period is greater than the average interarrival time of the input and it votes on ev- 
ery input, this situation will lead to progressively longer and longer latencies. Therefore, as- 
sume that the voter's period is less than the average interarrival time of the input. 

In the worst case, the voter preempts the execution of the participants before they have com- 
pletely processed their inputs and another period of the voter will have to elapse before voting 
processing commences. The worst-case latency in this case is Cp+Tv+Cv where Cp is the 
combined execution time of all participants and Cv is the execution time of the voter. 

If the voter is a period out of phase with the arrival of input, the worst-case latency is Tp+Cv 

Therefore, the worst-case latency is max(Cp+Tv, Tp)+Cv. 
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7      System Profiles and Software Architecture Trade-offs 

As illustrated in previous sections, a system can be subject to various types of attribute-spe- 
cific analysis. That is, for each quality attribute of interest we can apply a specific process to 
analyze the system from that attribute's point of view. For a given contract, applying the anal- 
ysis process to two different systems (i.e., systems that differ in software architecture or re- 
source allocation) is likely to yield different results along some attribute specific metric, as 
suggested in Figure 7-1. 

Attribute value 11 H" Effect of change 
on one attribute 

i\. 
Attribute value 

Attribute-specific f 
analysis ' 

Change in the 
software architecture or 
resource allocation 

t Attribute-specific 
analysis 

-► System2 Systemj   -^  
Figure 7-1:   Effect of Change on One Attribute 

These analysis processes are not necessarily formal or quantitative; the process depends on 
the attribute. Moreover, we do not expect that the various attribute-specific analyses will yield 
results in some uniform or common units of quality. This is not a new problem, as Boehm ob- 
served: 

Finally, we concluded that calculating and understanding the value of a single 
overall metric for software quality may be more trouble than it is worth. The 
major problem is that many of the individual characteristics of quality are in 
conflict; added efficiency is often purchased at the price of portability, accuracy, 
understandability, and maintainability; added accuracy often conflicts with 
portability via dependence on word size; conciseness an conflict with legibility. 
Users generally find it difficult to quantify their preferences in such conflict 
situations [Boehm 78, p. ix]. 

7.1   Conflicts Between Attributes 
Building on Boehm's observations, we do not expect that the effect of a change in the resource 
allocation or the software architecture can be so finely controlled that only selected attributes 
change values while other attributes remain constant. As suggested in Figure 7-2, the effect 
of a change is likely to affect multiple attributes.7 

7
- To stress the diverse and not necessarily quantitative nature of the attributes, the icons in the figure suggest 

attributes like weather (stormy, rainy, sunny), reading light (candle, bulb, moon), and expenses (increasing, de- 
creasing, and oscillating). These are measured in different units and with different techniques. 

CMU/SEI-96-TR-036 19 
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&] t O \ I /J\on multiple attributes/" 

dad 
djd 

Attribute-specific 
architecture analyses 

Systemj -<- 

Change m the 
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f    Attribute-specific 
I     architecture analyses 

System2 

Figure 7-2:   Effect of Change on Multiple Attributes 

Any parameter or piece of information obtained from the contract, the resource allocation, or 
the software architecture that is used in the analysis of more than one attribute is a source of 

conflicts between these attributes. 

Changing the software architecture or the resource allocation to satisfy an obligation in the 
contract might have consequences (good or bad) with respect to other obligations because all 
the attributes affected by the changed feature might have different (better or worse) values. 

For example, how we allocate processors to components has an effect on reliability (shared 
processors are single points of failure), has an effect on throughput (each component only gets 
the processor for a fraction of the time), and has an effect on latency (communications within 
the same processor are faster than over a local-area network [LAN]). Changing the processor 
allocation to decrease latency might also decrease throughput and reliability. 

7.2   System Profiles 
For a given contract, changes in the software architecture or the resource allocation might lead 
to different collections of attribute values. The collection of attribute values, software architec- 
ture, and resource allocation constitutes the profile of a system. 

Profiles can be used as yardsticks to compare systems — one system is better than another 
system if the former exhibits a better profile. In this case "better" could well be a qualitative, 
subjective judgement (the emphasis is on satisficing rather than optimizing a set of require- 
ments). The goodness of a profile is always relative to the contract; a profile might look better 
under a less strict contract, and vice versa: it might look worse under a more strict contract. 

Although we might lack precise control of individual quality attribute values, we could still 
chose between system profiles, as suggested in Figure 7-3. By choosing among system pro- 
files, we are in effect performing a trade-off between their respective software architectures. 
Even a purely qualitative assessment of profiles would serve as a valuable guide in selecting 
a software architecture. 
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7.3   Need for Representative Examples 

Obligations/ 
Expectations 

Reliability, 
throughput 
latency. 

Profile for 
System 1 

Profile for 
System 3 

Profile for 
System 2 

Hardware 
resources 

Software 
architecture. 

Hardware 
resources 

Software 
architecture; 

Figure 7-3:   System Profiles and Architecture Trade-offs 

Clearly there are an infinite number of combinations of contracts, hardware resource alloca- 
tions and software architectures that could be analyzed. Our hope is that a relatively small 
number of representative combinations can be used to flesh out the principles and to illustrate 
the approach for various attributes. This is similar to the approach taken by the ESPRIT Project 
CASCADE [CASCADE 93]. CASCADE deals with the assessment of safety critical sys- 
tems—in particular, with the assessment of the software of safety critical systems. CAS- 
CADE'S goal is to formulate a generalized assessment method for the railway and the 
automotive sectors. Krebs describes gaps between safety standards and their applicability 
[Krebs 95]. Some safety standards lack detail about applicable methods and measures to be 
applied properly; other standards are too detailed and are not only large and complex but also 
have a short life span; finally, measures recommended in standards are often of dubious effi- 
cacy, unconfirmed by actual experience. The approach adopted in CASCADE is that stan- 
dards should be generic and less complex, and that gaps in levels of detail could be closed by 
the addition of well-tried, up-to-date examples, evaluated by multiple assessors. 
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8      Conclusions 
We suggest a set of principles that has the potential to unify techniques developed indepen- 
dently by different communities of practitioners and researchers. The analysis techniques as- 
sociated with each attribute provide the basis for generating scenarios, questions, and 
checklists. The only information that needs to be gathered is the information that is needed to 
perform the analysis. Thus, one practice that might emerge from this work is the development 
of precise statements about (1) the type of information one could expect to see in a compo- 
nent's "attribute specification," (2) the type of attribute obligations a component should be able 
to make, and (3) the type of attribute compositions a component could be engaged in. 

The principles outlined in this paper must be tested by conducting architecture evaluations of 
real or proposed systems. As we gain experience with architecture evaluations, we might ex- 
pect to see certain system profiles become more or less desirable, over a range of contracts 
or contract types. Given a set of requirements (i.e., a collection of attribute values) we could 
then identify candidate architectures (and resource allocations) to implement the system by 
matching the requirements with the profiles in the library. Profile identification will then become 
another principle to include into software evaluation practice. 

Merriam-Webster's Collegiate Dictionary (Tenth Edition) defines method as "a systematic pro- 
cedure, technique, or mode of inquiry employed by or proper to a particular discipline or art". 
We are a long ways from that level of maturity in the practice but we hope that the experience 
gained from these experiments will lead to the codification or formalization of systematic pro- 
cedures—i.e., methods, for conducting attribute-based architecture evaluations. 

The analysis techniques for each attribute will change over time.Thus, the methods will require 
continuous updates, to keep up with current best practices. This is not different from other en- 
gineering disciplines; when better information, materials, analysis, etc. become available, the 
standards evolve. This is not to imply that the current generation of analysis techniques are to 
be trusted or taken as gospel until something better comes along — there is some skepticism 
about the benefits claimed by proponents of various software development methods [Fenton 
93] and we might be in worse shape than imagined. 

The problem of conflict highlighted by Boehm et al. is not going to disappear. However, since 
one of the principles calls for the explicit identification of obligations and expectations at all lev- 
els of decomposition of the system, we have a means to identify possible conflicts between 
attributes. Any parameter used in the analysis of more than one attribute is a source of con- 
flicts between those attributes. By being explicit about the parameters and the analyses that 
use them, we are establishing a more methodical, reproducible approach to architecture eval- 
uation and trade-off analysis. 
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Appendix A     Example Scenarios, Questionnaires, 
and Checklists 

Scenarios, checklists, and questionnaires can be used to identify the contract, the resource 
allocation, and the software architecture. In this appendix we illustrate their use to identify two 
kinds of information from the software architecture: fault propagation paths (identification of 
faults and their effects on the system) and service paths (resources required to implement a 

service). 

These are important items to identify because the intersections of fault propagation paths and 
service paths are sources of risk (e.g., the system might crash). The risk is reduced if there 
are redundant service paths, if faults can be detected and contained, if faulty components can 

be replaced, etc. 

A.1     Fault Propagation Paths 

Faults are undesirable states, events, or conditions that propagate between components of the 
system. A failure occurs when a fault arrives at the system boundary (i.e., the system has been 
unable to prevent its propagation to the boundary). 

Using fault propagation scenarios, checklists and questionnaires, the evaluators can propose 
a specific set of faults and assess their effects on the system. The information developed in- 
cludes the failure types, the pattern of failures, and the detection, containment, and recovery 
actions available. Most of the cases we list in the following illustrations are derived from 
Heimerdinger and Laprie [Heimerdinger 92, Laprie 92]. 

A.1.1   Failure Types 

There are several types of failure scenarios to consider. 

Timing failures —Timing failures occur when the timing of a service delivered to the environ- 
ment does not meet a system's obligation. Timing failures are expressed as deviations in time, 
such as, the event signaling the start/end of the delivery of a service is earlier, later (or "never") 
than the correct time. 

Value failures—Value failures occur when a value delivered to the environment does not meet 
a system's obligation. Value failures are expressed as deviations in value, such as the comput- 
ed value is smaller, or larger than the correct value, the distribution of computed values is dif- 
ferent from the distribution of the correct value, etc. 

Resource failures — Resource failures occur when the use of a resource does not meet a sys- 
tem's obligation. Resourse failures are expressed as deviations in resource utilization, such 
as, the resource is overused, underused, exhausted, etc. 
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A.1.2   Pattern of Failure 

Patterns of failure are expressed in terms of time of occurrence of events, duration of condi- 
tions, distribution or variability of timing and duration, etc. It helps to know how often we need 
to deal with a fault because containment or repair might consume resources and degrade ser- 
vices, in violation of system obligations. Question to consider include 

• Can we determine the immediate cause of the fault or fault activator? 

• Is the fault attributable to a single component or resource, or to an interaction between 
components and resources? 

• What is the duration and pattern of the fault activation? Is the fault permanent or transient? 
Is the fault periodic or aperiodic? 

• How fast does a fault propagate and cause a failure? How long does it stay dormant in the 
propagation chain as it goes from active to dormant to active, etc.? 

• Which components or resources are affected by the propagation and in what order? 

A.1.3   Detection Actions 

Detection actions are expressed in terms of the types of faults observable in different compo- 
nents or resources. Faults can change their type as they propagate (e.g., a value fault injected 
into a component might emerge later on as a timing fault). Different types of failures violate 
different obligations and expectations. It helps to know the type and location where can the 
fault be detected because there might be alternative strategies for containment and repair. 

Questions to consider include 

• How is a fault transformed as it propagates between components? How does it change 
from a {timing, value, resource} fault to a {timing, value, resource} fault? 

• Does a fault always propagate and becomes a failure and does the failure always manifest 
itself in the same way, to all the observers in the environment? Cases to consider include 

- It may disappear with no perceptible effect. 

- It may remain in place with no perceptible effect. 

- It may lead to a sequence of additional faults that result in a failure (propagation 
to failure). 

- It may lead to a sequence of additional faults with no perceptible effect on the 
system (undetected propagation without failure). 

- It may lead to a sequence of additional faults that have a perceptible effect on 
the system (detected propagation without failure). 

A.1.4   Containment and Recovery Actions 

Containment and recovery actions are expressed in terms of locality, degradation of service, 
and cost of repair. Containment or repair actions can have profound effects on system struc- 
ture, behavior, and resource utilization. It helps to know what containment or repair actions can 
occur because both during the repair and afterwards the system might be degraded and cer- 
tain obligations might not be met. Questions to consider include 
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• Is there built-in redundancy in space? Can we repeat work hoping that fault activations 
are localized and don't affect all components/resources the same way? 

• Is there built-in redundancy in time? Can we repeat work hoping that fault activations are 
transient and don't affect the same components/resources? 

• Is there redundancy in source of time? What kind of clocks, interval timers, protocols are 
in use? 

• Are there fault containment regions? Can we contain value faults by limiting 
communication and replicating components (i.e., make regions self-contained, with fewer 
common-mode faults)? Can we contain resource faults by eliminating shared resources? 
Can we contain timing faults by ignoring an event that should not have happened, 
generating a missing event, or combining these two to achieve the effect of delaying an 
early event? 

• Is there service degradation? What is the remaining capability to deliver each service? 
what components/resources are needed to support remaining capability? What services 
can disappear /persist/reappear? 

• Is there fault recovery? What is being repaired or masked? Is the fault removed or is the 
fault activation suppressed? What is the permanency of the repair action?. Is a fault fixed 
permanently, not just made dormant albeit for a large amount of time (temporary repair)? 

• What is the nature of the repair action? Is it forward recovery, backward recovery, 
compensation, or masking? What components and resources are needed to execute the 
repair actions? What is the mean time to repair? How long does it take to execute the 
repair action? 

• Are there fault-free, predictable, consistent states? Can we bring the system to a safe 
state to replace the component? Can we replace the component at a random time to 
handle a detected fault? 

• Who makes the decision to replace a failed component? Is it the component itself, some 
central controller, negotiation among other components? If multiple components must 
agree, which technique is used? 

A.2    Service Paths 

Performance is the by-product of how resources are allocated and consumed to implement a 
service. Using scenarios, checklists, and questionnaires the evaluators can identify the re- 
sources, the resource consumers, and the allocation or mapping of consumers to resources 
required to implement a service. 

Resource consumers — processes and messages. Resource consumers are initiated by 
events that propagate through the software architecture. 

Resources — processors, storage, networks. As events propagate through the software archi- 

tecture they use such resources. 

Resource allocation/mapping — how consumers are mapped onto resources such as process 
allocation and process prioritization. Inevitably competition for resources arises, and thus re- 
sources must be judiciously allocated to respond to events while meeting performance re- 

quirements. 
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A performance checklist identifies the types of performance attributes the system will have to 

exhibit 

latency—What is the window of time in which the response to an event must occur? What 
is the severity of the consequences of not meeting the requirement (i.e., not completing 
within the response window)? 

jitter — What is the allowable tolerance for deviation from an event prescribed to be 
generated periodically? Ideally, the event will occur precisely at some point in time. 

precedence — What events are interdependent and what is the dependence (i.e., what 
events are constrained to occur in some specified order and potentially with latency 
requirements between them)? 

throughput — How many events per unit time need to be responded to? What is the 
interval over which throughput must be maintained for each applicable event? 

capacity — How much demand can be placed on the system while continuing to meet 
latency and throughput requirements? Demand can be thought of in terms of utilization, 
number of event stream, etc. 

Since performance requirements can vary over time, a performance checklist should also 
identify the various modes of operation and levels of operation. 

• List significant modes of operation. How can the demand change over time? How can 
resources and resource topology change over time? 

• List significant levels of performance. What happens when system capacity is exceeded 
and not all events can be responded to in a timely manner? Are there levels of 
degradation? 

A.2.1   Resource Consumers 

Resource consumption is determined by the nature of the software concurrency architecture 
and the nature of the system event arrivals. Items to include in resource consumer checklists 

include: 

• Identify previously made decisions that impact performance. Are there pre-specified 
hardware components (e.g., processors, buses)? Are there pre-specified software 
components (e.g., OS, compiler)? Are there previously made design decisions (e.g., 
concurrency decisions, synchronization mechanisms)? 

• Identify the processes involved in the thread. 

• Identify embedded processes. If the component is not a process, does it contain a 
process or does it execute on a different resource than others in the thread? How are 
modules (e.g., objects, subprograms) mapped to processes. 

• List characteristics of each process that impact performance. What is the priority 
assignment of each process? What are the estimated execution times for each process? 
What resources are needed (i.e., which CPU)? Can the resource be used atomically (i.e., 
non-preemptable sections)? 

• Identify interrupts, interrupt handlers, and their priorities. Can interrupts be masked? How 
long? 
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• Identify connections between processes for every process in the response thread. Are the 
connections synchronous or asynchronous? Is there transfer of data or control? What 
resources are needed (e.g., CPU, LAN, bus)? What is the estimated execution time 
(resource usage)? 

• Identify points in which more than one response thread must synchronize. Is 
synchronization necessary? Does synchronization involve coordinating the use of a 
resource? What synchronization protocols are used and what are their characteristics? 
What interprocess communication mechanisms are used and what are their 
characteristics? 

• Identify event streams. An event stream is a sequence of events from the same source. 

• Identify the arrival pattern of each stream. Is is periodic, sporadic or stochastic? What are 
the worst-case and steady-state patterns? 

• Identify the thread through the architecture for each event stream. What components and 
connections are traversed by the events? What processes and messages are required to 
respond to each event? 

A.2.2   Resources 

Items to include in resource checklists include generic characteristics for all resources: speed, 
amount, allocation units, allocation policy as well as resource-specific characteristics that im- 
pact performance: 

• CPU — scheduling discipline, number of priority levels, clock granularity, sources of OS 
overhead, sources of OS-induced blocking, maximum duration of masked interrupts, 
maximum duration of non-preemptable sections, Interrupt levels for various types of 
interrupts, processor speed, etc. 

• storage — nature of the mutual exclusion mechanism, shared memory, virtual memory, 
process address space description, address space protection 

• network — type of network, network bandwidth 

A.2.3   Resource Allocation/Mapping 

Items to include in resource allocation/mapping checklists include 

• Identify the resources needed by each process/message. 
• Identify any constraints on process/message allocation. 

• Identify how processes/messages are allocated to processors. 

• Estimate how much of each resource is used by each stream. 
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Appendix B     Glossary of Quality Terms1 

accidental faults — faults created by chance. 

active fault — a fault which has produced an error. 

aperiodic — an arrival pattern that occurs repeatedly at irregular time intervals. The frequency 
of arrival can be bounded by a minimum separation (also known as sporadic) or can be com- 

pletely random. 

attribute specific factors — properties of the system (such as policies and mechanisms built 
into the system) and its environment that have an impact on the concerns 

availability — a measure of a system's readiness for use. 

benign failure — a failure that has no bad consequences on the environment. 

Byzantine failure — a failure in which system users have differing perceptions of the failure. 

capacity — a measure of the amount of work a system can perform. 

catastrophic failure — a failure that has bad consequences on the environment it operates 

in. 

complex interactions — those of unfamiliar sequences, or unplanned and unexpected se- 
quences, and either not visible or not immediately comprehensible. 

component coupling — the extent to which there is flexibility in the system to allow for un- 
planned events. Component coupling ranges from tight (q.v.) to loose (q.v.) 

confidentiality — the non-occurrence of the unauthorized disclosure of information. 

consistent failure — a failure in which all system users have the same perception of the fail- 

ure. 

criticality — the importance of the function to the system. 

dependability — that property of a computer system such that reliance can justifiably be 
placed on the service it delivers. 

dependability impairments — the aspects of the system that contribute to dependability. 

dormant fault — a fault that has not yet produced an error. 

error — a system state that is liable to lead to a failure if not corrected. 

event — a stimulus to the system signaling the need for the service. 

1-    This glossary is taken from Quality Attributes, Barbacci, et al., pp. 47-51 [Barbacci 95]. 
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event stream — a sequence of events from the same source—for example, a sequence of 

interrupts from a given sensor. 

Event Tree Analysis (ETA) — a technique similar to Fault Tree Analysis. Starting with some 
initiating (desirable or undesirable) event, a tree is developed showing all possible (desirable 
and undesirable) consequences. 

fail-safe — a system which can only fail in a benign manner. 

fail-silent — a system which no longer generates any outputs. 

fail-stop — a system whose failures can all be made into halting failures. 

failure — the behavior of a system differing from that which was intended. 

Failure Modes and Effects Analysis (FMEA) — a technique similar to Event Tree Analysis 
(ETA). Starting with potential component failures, identifying its consequences, and assigning 
a "risk priority number" which can be used to determine how effort should be spent during de- 

velopment. 

Failure Modes, Effects, and Criticality Analysis (FMECA) — an extension of Failure Modes 
Effects Analysis (FMEA) that uses a more formal criticality analysis. 

fault — the adjudged or hypothesized cause of an error. 

fault avoidance — see fault prevention. 

fault forecasting — techniques for predicting the reliability of a system over time. 

fault prevention — design and management practices which have the effect of reducing the 
number of faults that arise in a system. 

fault removal — techniques (e.g., testing) involving the diagnosis and removal of faults in a 

fielded system. 

fault tolerance — runtime measures to deal with the inevitable faults that will appear in a sys- 

tem. 

Fault Tree Analysis (FTA) — a technique to identify possible causes of a hazard. The hazard 
to be analyzed is the root of the tree and each necessary preconditions for the hazard or con- 
dition above are described at the next level in the tree, using AND or OR relationships to link 
subnodes, recursively 

halting failure — a special case of timing failure wherein the system no longer delivers any 
service to the user. 

hazard — a condition (i.e., state of the controlled system) that can lead to a mishap. 
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Hazard and Operability Analysis (HAZOP) — evaluates a representation of a system and 
its operational procedures to determine possible deviations from design intent, their causes, 

and their effects. 

human-made faults — those resulting from human imperfection. 

impairments to dependability — those aspects of the system that contribute to how the sys- 
tem (mis)behaves from a dependability point of view. 

inconsistent failure — see Byzantine failure. 

integrity — the non-occurrence of the improper alteration of information. 

intentional faults — faults created deliberately, with or without malicious intent. 

interaction complexity — the extent to which the behavior of one component can affect the 
behavior of other components. Interaction complexity ranges from linear (q.v.) to complex 

(q.v.). 

interlocks — implementation techniques that prescribe or disallow specific sequences of 

events. 

intermittent faults — a temporary fault resulting from an internal fault. 

internal faults — those which are part of the internal state of the system. 

jitter — the variation in the time a computed result is output to the external environment from 
cycle to cycle 

latency — the length of time it takes to respond to an event. 

latency requirement — time interval during which the response to an event must be execut- 
ed. 

latent error — an error which as not yet been detected. 

linear interactions — interactions that are in expected and familiar production or mainte- 
nance sequence, and those that are quite visible even if unplanned. 

lockins — implementation techniques that lock the system into safe states. 

lockouts — implementation techniques that lock the system out of hazardous states 

loose coupling — characterizes systems in which processes can be delayed or put in stand- 
by; sequences can be modified and the system restructured to do different jobs or the same 
job in different ways; they have "equifinality"—many ways to reach the goal. 

maintainability — the aptitude of a system to undergo repair and evolution. 
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methods — how concerns are addressed: analysis and synthesis processes during the de- 
velopment of the system, procedures and training for users and operators. 

mishaps — unplanned events that result in death, injury, illness, damage or loss of property, 

or environment harm. 

mode — state of a system characterized by the state of the demand being placed on the sys- 
tem and the configuration of resources used to satisfy the demand. 

observation interval — time interval over which a system is observed in order to compute 

measures such as throughput. 

performance — responsiveness of the system—either the time required to respond to specif- 
ic events or the number of events processed in a given interval of time. 

performance concerns — the parameters by which the performance attributes of a system 

are judged, specified, and measured. 

performance factors — the aspects of the system that contribute to performance. 

periodic — an arrival pattern that occurs repeatedly at regular intervals of time. 

permanent fault — a fault which, once it appears, is always there. 

physical faults — a fault that occurs because of adverse physical phenomena. 

precedence requirement — a specification for a partial or total ordering of event responses. 

processing rate — number of event response processed per unit time. 

quality — the degree to which software possesses a desired combination of attributes (e.g., 

reliability, interoperability) [IEEE 1061]. 

reliability — a measure of the rate of failure in the system that renders the system unusable. 
A measure of the ability of a system to keep operating over time. 

response — the computation work performed by the system as a consequence of an event. 

response window — a period of time during which the response to an event must execute; 
defined by a starting time and ending time. 

safety — a measure of the absence of unsafe software conditions. The absence of cata- 
strophic consequences to the environment. 

safety indicators — the aspects of the system that contribute to safety. 

schedulable utilization — the maximum utilization achievable by a system while still meeting 

timing requirements. 
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security factors — the aspects of the system that contribute to security. 

service — a system's behavior as it is perceived by its user(s). 

Software Fault Tree Analysis (SFTA) — an adaptation to software of a safety engineering 
analysis methodology. The goal of SFTA is to show that the logic contained in the software 
design will not cause mishaps, and to determine conditions that could lead to the software con- 
tributing to a mishap. 

spare capacity — a measure of the unused capacity. 

temporary fault — a fault which disappears over time. 

throughput — the number of event responses that have been completed over a given obser- 
vation interval. 

tight coupling — characterizes systems that have more time-dependent processes: they 
cannot wait or stand by until attended to; the sequences are more invariant and the overall 
design allows for very limited alternatives in the way to do the job; they have "unifinality"—one 
unique way to reach the goal. 

timing failure — a service delivered too early or too late. 

transient fault — a temporary fault arising from the physical environment. 

user of a system — another system (physical or human) which interacts with the former. 

utilization — the percentage of time a resource is busy. 

value failure — the improper computation of a value. 
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